## BULLION / COINS QUICKLY IDENTIFY FAKES

## There are some simple things we can do first to determine if a Coin, Round, Bar is fake.

Step 1. Set Sigma to Match the Bullion Karat/Percentage of Fineness (if bar is out of brackets = Fake, if close like the Silver Eagle move to next step)


Step 2. (not in package): Check Weiaht aqainst what it should be (31.1) and
actual ( 31.5 g )


## United States

| Value | $1.00 \mathrm{U.S}$. dollar (face value) |
| :--- | :--- |
| Mass | $31.103 \mathrm{~g} \mathrm{(1.00} \mathrm{troy} \mathrm{oz)}$ |
| Diameter | $40.6 \mathrm{~mm}(1.598 \mathrm{in})$ |
| Thickness | $2.98 \mathrm{~mm}(0.1173 \mathrm{in})$ |
| Edge | Reeded |
| Composition | $99.9 \% \mathrm{Ag}$ |

Step 3. (not in package): Check diameter against what it should be ( 40.6 mm ) and thickness (against what it is $(40.63 \mathrm{~mm})$ and thickness $(2.98 \mathrm{~mm})$ vs actual thickness 3 mm ). Is this FAKE or REAL?


## BULLION / COINS QUICKLY IDENTIFYFAKES

## There are some simple things we can do first to determine if a Coin, Round, Bar is fake.

Explained. This is actually a pretty good American Eagle Fake. It almost passes the SIGMA, almost the weight, and almost the caliper. (1 bar outside is typically not a straight FAIL). It also is close to passing the measurements for specific gravity. The bar being outside of the brackets, along with the other measurements being slightly off, would give this a fail for us on an American Eagle.

Step 4. Hold the coin on your finger, then ding another against it. You should hear a distinct sound. Compare to a real one or another pure silver round. (this fake does not pass it).

Step 5. XRAY, and see how it is reading (remember your XRAY if you have one only goes through a triple platting). So if this coin had more platting, it could have passed the XRAY! (XRF, is typically not really used for bullion.

Step 6. I normally do not recommend ever sanding bullion. In this case for training, we sanded it below and it is copper filled (we knew it would be from the XRAY and also the sigma pass).


Step 3. (not in package): Check diameter against what it should be ( 40.6 mm ) and thickness (against what it is ( 40.63 mm ) and thickness ( 2.98 mm ) vs actual thickness 3 mm ). Is this FAKE or REAL?


## BULLION / COINS QUICKLY IDENTIFY FAKES

There are some simple things we can do first to determine if a Coin, Round, Bar is fake.
Step 1. Set Sigma to Match the Bullion Karat/Percentage of Fineness (if bar is out of brackets = Fake, if close like the PAMP to next step)


Step 2. (in package): Check Thickness and Height against what it should be. Thick plastic $=$ bad take it out ( 17.8 mm Wide, 30 mm Tall, 5.36 mm Thick


Step 3. (in package): Check Measurements Against. 17.8mmx30mmx5.3mm= Gold Should Have: 1,610 cubic mm per 1 troy ounce
This Bar Has: 2,830 Cubic MM This Bar is FAKE!
$17.8 \times 30 \times 5.3=$

## 2830.2

The reason why, is it is probably copper filled. Copper will give false readings on the SIGMA

A tungsten bar/round/coin will pass the Caliper measurements but not the SIGMA because it has almost the same density as gold, but much different conductivity and resistivity (which the SIGMA uses to test).

## BULLION / COINS QUICKLY IDENTIFY FAKES

There are some simple things we can do first to determine if a Coin, Round, Bar is fake.

| 01 | 02 | 03 | 04 |
| :---: | :---: | :---: | :---: |
| Morgan <br> Dollars: <br> Check the <br> weight: 26.73 <br> Grams. <br> If under <br> 26grams, <br> must be really <br> worn. If under <br> 25.73, it is <br> FAKE | Packaging: <br> Thick <br> packaging is a <br> big no go. <br> take in doubt out to <br> the package <br> and weigh, <br> and SIGMA <br> test. | Silver: <br> Copper has <br> similar <br> conductivity <br> but the <br> density is <br> much <br> different so <br> the weight or <br> size will be <br> off. | Check the <br> weight, and <br> SIGMA on the <br> correct <br> ing. When doubt <br> caliper. |


| 05 | 06 | 07 | 08 |
| :---: | :---: | :---: | :---: |
| Sigma: <br> The "BAR" should be directly between the brackets. | Sigma: <br> The Sigma has several settings, make sure you notice 99.9 and 99.99 | Sigma: <br> The sigma can even work on 925 silver, and is a great way to help authenticate sterling silverware | Sigma Wand: <br> The wand is calibrated to the device. Be sure not to lose them |
|  |  |  |  |

# Precious Metal Verifier Manuals 



Sigma Guides


## Results Interpretation

The black cursor box will be between the brackets if the metal is within the expected range.

## [ \| ]

The black cursor box can read slightly to the left of the brackets if the sample:

- is lightly embossed
- is very cold.
- is too small and/or far away from the sensor Further checking, research and analysis by another method is recommended.
I[ ]

The black cursor box can read slightly to the right of the brackets if the sample:

- is deeply embossed
- is very warm
- is to thin or too small for the chosen sensor (see calibration disk page 8)
- is off the center target on the main unit sensor

Further checking, research, and analysis by other methods is recommended.

$$
\left[\begin{array}{lll}
{[ }
\end{array}\right]
$$

The further the black cursor is outside the brackets the more likely it is that the sample is not made from the selected metal. Further checking, research and analysis by another method is recommended.

- [ ]


If a left or right arrow appears, then the metal in the sample is most likely not the metal selected.

$\rightarrow$

There are some simple things we can do first to determine if a Coin, Round, Bar is fake.

| 01 | 02 |
| :---: | :---: |
| https://www.moneymetals.com <br> Find the coin/round/bar and <br> look for the "SELL TO US | https://jmbullion.com/ <br> Find the coin/round/bar and <br> look for the "SELL TO US |
| PRICE". This is the wholesale <br> value | PRICE". This is the wholesale <br> value |
|  |  |

Sell to Us Price: $\$ 1,865.15$ each.

| 03 | 04 |
| :---: | :---: |
| 1964 and before Dimes, <br> Quarters and Half dollars are <br> $90 \%$ silver. | Most "RARE" coins are not <br> worth much extra unless <br> authenticated by NGC or <br> PSCGS. You can look up the <br> number on their website. |
| Trick: Facevalue. 10 dimes = \$1 <br> or \$1 Face Value. 5 dimes and <br> 2 quarters = \$1 or \$1 <br> Facevalue. | $\frac{\text { https://www.ngccoin.com/ }}{\text { https://www.pcgs.com/ }}$ |

\$1 Face Value has coins contains . 715 troy ounces of Silver or 20.26 Grams

## https://www.coinflation.com/

## GUIDE TO METALS

## There are some simple things we can do first to determine if a metals and the differences.

| SILVER | GOLD |
| :---: | :---: |
| Has similar | Has similar density to |
| conductivity/resistivity to | TUNGSTEN but different |
| COPPER but different density. | conductivity. |

Density: 10.49 grams/cm3 Conductivity: 61,1
Resistivity: 1,6
Volume:
1 Troy Oz = 2,964.7mm
 (length $x$ width $\times$ height)

## COPPER

Has similar conductivity/resistivity to SILVER but much different density.

Density: 8.96 grams/cm3
Conductivity: 58,7
Resistivity: 1,7
Volume:
1 Troy Oz=3,470.9mm
(length $x$ width $x$ height)


## TUNGSTEN

Has similar density to GOLD but much different conductivity.


Density: 19.25 grams/cm3
Conductivity: 8,9
Resistivity: 11,2
Volume:
1 Troy Oz = 1,611mm
(length $x$ width $x$ height)


| Aluminum | 2.7 | 11,519.81 | $2.82 \times 10-8$ | $3.5 \times 10+7$ |
| :---: | :---: | :---: | :---: | :---: |
| Copper | 8.96 | 3,471.37 | $1.68 \times 10-8$ | $5.96 \times 10+7$ |
| Gold | 19.32 | 1,609.91 | $2.44 \times 10-8$ | $4.10 \times 10+7$ |
| 18K Green | 15.9 | 1,956.19 |  |  |
| 18K Yellow | 15.58 | 1,996.37 |  |  |
| 18K White | 14.64 | 2,124.56 |  |  |
| 18K Red | 15.18 | 2,048.98 |  |  |
| 14K Green | 14.2 | 2,190.39 |  |  |
| 14 K Yellow | 13.07 | 2,379.76 |  |  |
| 14K White | 12.61 | 2,466.57 |  |  |
| 14K Red | 13.26 | 2,345.66 |  |  |
| 10K Green | 11.03 | 2,819.90 |  |  |
| 10K Yellow | 11.57 | 2,688.29 |  |  |
| 10K White | 11.07 | 2,809.71 |  |  |
| 10K Red | 11.59 | 2,683.65 |  |  |
| Nickel | 8.9 | 3,494.78 |  |  |
| Palladium | 12 | 2,591.96 |  |  |
| Platinum | 21.45 | 1,450.05 |  |  |
| Rhodium | 12.44 | 2,500.28 |  |  |
| Silver | 10.49 | 2,965.06 | $1.59 \times 10-8$ | $6.30 \times 10+7$ |
| Sterling Silver | 10.36 | 3,002.27 |  |  |
| Coin Silver | 10.31 | 3,016.83 |  |  |
| Tin | 7.3 | 4,260.75 |  |  |
| Tungsten | 19.25 | 1,611.00 | $5.6 \times 10-8$ | $1.79 \times 10+7$ |
| Zinc | 7.13 | 4,362.34 | $5.90 \times 10-8$ | $1.69 \times 10+7$ |

- If you really like to geek out on this stuff, and understand it.
- Look up: "DUX+C" for Density, Ultrasound, Xray, Conductivity.
- Look up how metals properties, and how they related. Some are very similar and some are different, This is why passing 3 tests is important to verify the metal is authentic as stamped.

